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Damping Forces of Vibrating Cylinder in Confined Viscous
Fluid by a Simplified Analytical Method

Woo-Gun Sim*
(Received May 14, 1993)

The simplified analytical solutions for viscous damping have been formulated,
considering the results obtained by an existing numerical method, for relatively narrow annular
configurations: (i) when a rigid cylinder executes translational oscillation in the plane of
symmetry, and (ii) a flexible cylinder vibrates in its first mode as a clamped-clamped beam
subject to axial flow. For narrow annular passages, the viscous damping has significant
effects on fluid-dynamic forces. In such a case, an inviscid fluid model is acceptable for
estimating added mass. This theory is developed for both relatively high and low oscillatory
Reynolds numbers. In terms of computational efficiency, it is useful to obtain the viscous
damping forces using this approximate method. Also this method has important benefit for
the future study of stability analysis of system; since, the viscous damping forces obtained
by the present method can be expressed in terms of the oscillatory Reynolds number explicitly.
To validate this theory, the results are compared with the ones obtained by the full viscous
theories in the previous works. These results were found to be in reasonably good agree­
ment with the results of the full theories.

Key Words: Flow-Induced Vibration, Added Mass, Viscous Damping, Penetration Depth,
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1. Introduction

When a cylinder vibrates in viscous fluid, the
fluid-dynamic forces acting on the moving
cylinder are influenced by the fluid properties,
including axial flow velocity, and also by the
geometry of the system (Chen, et aI., 1976;
Yang and Moran, 1979 and Pai'doussis, et aI.,
1989). Fluid damping for circular cylinders in
various flow conditions have been summarized by
Chen (1981). In general, the resulting forces
become larger with the confinement of the an­
nulus. According to the existing results, the added
mass coefficient is mainly affected by the geome­
try for narrow configurations, especially in the
case of relatively high oscillatory Reynolds
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number Res. The effect of Res itself 011 the added

mass is relatively small. Thus, the added mass
for narrow annuli can be estimated by poten­
tial theories (Fritz, 1972; Chung and Chen,
1977). In contrast to the added mass, the
damping coefficient is strongly dependent on
the oscillatory Reynolds number, as well as on
the geometry of system. Especially for narrow
annular passages, the effect of viscous damping
on the fluid-dynamic forces should be consid­
ered for the analysis of stability, even if the
viscosity of the fluid is relatively small. Due to the
confinement, the viscous drag force by
unsteady viscous flow is an important compo­
nent of the fluid forces.

It was found in the previous numerical
study based on the spectral collocation method
(Sim and Cho, 1993a), that higher-order terms in
the Chebyshev polynomials are clearly needed, as
the oscillatory Reynolds number is increased;
since, the penetration depth, defined by (Jp =
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j'I))fW (Schliching, 1979), is very small compar­

ed to the annular space between the two cylinders.
The penetration depth is associated with un­

steady viscous wave. Thus a very large system
of equations is expected to become necessary

for such problems. Potential flow theory can of
course be utilized to obtain the added mass,

but the viscous forces cannot easily be esti­

mated, because of the large size of the matrices
obtained by viscous flow theory in the spectral

collocation method. This is a reason why the

approximate method for obtaining the viscous
forces with axial flow was developed in the

previous work (Sim and Cho, 1993b).
By assuming a relatively low frequency and

Reynolds number, the previous analytical theory

undertaken by the author for the flexural motion
of cylinder subject to axial flow, has been for­
mulated to estimate the fluid-dynamic forces. To

approximate the viscous force, a parabolic radial
distribution of the unsteady circumferential flow

velocity in the annular flow was introduced. In
the previous work devoted to the spectral method,

it was found that the unsteady flow velocity
profile is different from the parabolic one when
the ratio of the penetration depth with respect

to the annular space is relatively small. The
initial motivation was to modify the analytical

method for reducing the limitations mentioned
above.

With the full viscous theories shown in the
previous works, the damping coefficient con­

tains the effect of the oscillatory Reynolds
number, but the coefficient was expressed as im­

plicit function of the oscillatory Reynolds num­
ber. Thus, an iteration procedure is required to
obtain the eigenfrequencies of a system. In this
point of view, it is convenient to obtain the
damping force through an analytical method

where the coefficient can be expressed as ex­
plicit function of the oscillatory Reynolds num­
ber. Using the present analytical method, the
damping force can be estimated for both high and

low oscillatory Reynolds numbers and expressed
in terms of the oscillatory frequency and motion
of the moving cylinder. This is main benefit of the

present approximate method for future purpose of

stability analysis.

2. Unsteady Viscous Drag Force Due
to Translational Oscillation

To develop the present analytical theory, the
results obtained by the previous theory(Sim and

Cho, 1993a) are carefully examined. According

to those results, the unsteady pressure varia­
tion across the annular gap is very small and the

mean value of the unsteady flow velocity in the
circumferential direction (in phase with the

velocity of the moving cylinder) is approxi­

mately equal to its flow velocity obtained by
the potential flow theory. Moreover, the second

order term of Chebyshev polynomials defined
for the circumferential flow velocity is quite
large for low oscillatory Reynolds numbers,

which means that the distribution of the velocity

has a parabolic profile in this case. For high
oscillatory Reynolds numbers, the amplitude of

the circumferential-flow velocity at a penetra­

tion depth (r = a + Op or r = b - op), is almost the
same as the corresponding one given by potential
flow theory. In the present analysis, the oscillator­

y Reynolds number is expressed in terms of the

radius ratio to penetration depth as Res= 2(a/
op)2=wa2/lJ.

Using the previous numerical methods
undertaken by the author, the nondimensional

flow velocities, circumferential( w*) and
radial( v*) components, to the lateral veloc­

ity(ev) of the moving cylinder are plotted in
Fig. I along the radial direction for concentric
configuration. In this figure, the dotted line

represents the circumferential-flow velocity
obtained by the potential flow theory. As
mentioned before, the shape of the real part
of complex-flow velocity in the circumferential
direction is similar to that for steady viscous flow
(Laminar or turbulent flow); however, for un­
steady flow, the characteristic of the profile is

dependent on the oscillatory Reynolds number
instead of Reynolds number defined for steady
flow. Physically, the mean flow velocity can be
estimated by potential flow theory for very high

oscillatory Reynolds number since the penertra-
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where the skin frictions on the surfaces of the
inner and outer cylinder are given by

Fig. 1 The distribution of the nondimensional am­
plitude of the unsteady flow velocity for b/ a
= 1.25. Res = 50(filled symbols) and Res=
1,740(open symbols) across the annular
space; (a) the circumferential and (b) the
radial components. Viscous theory; 0 .,

real part; £:" A, imaginary part; ---, cir­
cumferential components obtained for the
potential flow (Sim and Cho. 1993a)

tion depth for the case is very small compared to

the annular gap.
In the present analysis, the unsteady radial

flow velocity is not considered, in order to
simplify the problem, so that its effect on the drag

forces is neglected. Physically, the unsteady skin
friction on the surface is induced mainly by the

unsteady circumferential flow velocity. Also, the
unsteady pressure drop in the circumferential

direction is affected by the skin friction. Under
these considerations, a drastically simplified

form of the Navier-Stokes equations is

obtained; from that starting point, the problem
is formulated to evaluate the viscous drag force.

2.1 Formulation
Considering the assumptions defined for the

present problem, the simplified momentum equa­

tion is obtained, by integrating the Navier­
Stokes equation across the annular space for
the element shown in Fig. 2, as

(2)aW*1 aW*1fa=Ji-- , fb=-Ji-- ,ar r~a ar r'=b

where w* and p* denote the unsteady circum­
ferential flow velocity and the unsteady pres­

sure, respectively By the assumption of small
amplitude motion of the cylinder in a narrow
annular passage, the right hand-side of Eq. (I)

can be neglected.
Introducing the dimensionless parameters, Jj =

p*/(pa2w2ee'W') and iiJ=w*/(taw~;e'W'), with
the aid of coordinate, Z = 1- 2( r - a)/ H,
transformation-see Fig. 2, the governing equa­
tion for a narrow annulus are nondimensional­

ized as

Fig. 2 The shear stress acting on surface elements of
the inner and outer cylinders due to the
unsteady circumferential flow velocity and
computational domain (Z, (J) obtained by
the coordinate transformation

lL- c~2~ 1+ h/2 [ aiiJ I - aiiJ I ] (3)
ao - Res h2 az Z=l az Z=-l '

and the shear stress is obtained by

aw* 2 a·wf=f.l.---=-cpa2w2ee'W'------.!-, (4)
ar hRes ~Z

where aee,wt denotes the lateral displacement of

oscillatory motion of the cylinder so e is non­

dimensional lateral displacement, and the annular

space is expressed as H=ah(O)=jl,2- e2sin20
- ecos 0 - a. Generally, the lateral displacement
is considered to be small in flow-induced vibra­
tion problems so that the nonlinear effects of a
production between unsteady terms in governing
equation on unsteady viscous flow might be
negligible.

For the purpose of this simplified analysis, the
mean flow velocity w* across the gap will be

calculated by potential theory. From the veloc-

(I)

(b)(a)
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ity potential r/J and the relationship w*=(I/r)
(ar/J/ ae), one can obtain by integrating over the
gap

(10)

(I I)

awl -az Z~l = -(3 Wk+ 28)s(kB),

awl -az z~_1=(3Wk+8)S(kB).

Hence, the mean value of it, W, may be

obtained by integrating w over the annular

gap

w=+l;O!:(WJkZ2+ Wl~Z+ Wo~)s(kB)dZ

= l;o(--} W2~ + Ulo~ )s(kB). (9)

Taking account of two boundary conditions

and of the above equation together with Eq. (7),

the three-unknown coefficients could clearly be
expressed in terms of Wk in the form

n
2: (W2~Z2+ Wl~Z + Wo~)s(kB)lz~l= -sinB,
k=O

±(W2~Z2+ Wl~Z+ Wo~)s(kB)lz~-l=0.
k~O

(b) case of relatively high oscillatory Reynolds

number
By inspection of the distribution of the

unsteady circumferential flow velocity across
the annular space for this case (see Fig. I), the
radial derivative of the velocity in phase with
the velocity of the moving cylinder can be

approximated in terms of the penetration depth as

subject to the boundary conditions

t_ 3 - 2W2k---yWk- 48,

t_3- 1"WOk--yWk+4u ,

where 8=0 when k=i=l, or 8=1 when k=l;
from which the skin friction on the surface can
be obtained. In view of Eq. (3), one ought to

derive the following equation from Eq. (8)

with the known coefficients W2~, Wl~ and Ulo~, to
obtain the pressure distribution,

number
As discussed before, the circumferential flow

velocity w* has a parabolic profile in this
case. In this method, the dimensionless flow
velocity wmay be approximated in the following

form
(5)

-*_ I l b
I a"'dw -- ~-'!.Y..- r

H a r ae111 I
=(i _1 2-h(Z-l)L(r/J)dZ,

w= ~ks(kB)1: 2-h(~ -l)~ q)jkTiZ)dZ

= ±Wks(kB), (7)
k~O

where the operator, L(r/J), can be expressed as L
(q'»=ar/J/aB+[(I-Z)/h] • (ah/aB)' (arP/aZ).
Considering the results shown in Fig. I for
potential flow, the last term of the light hand side

in the equation, L( r/J), is negligible especially for
narrow annulus or an annulus of relatively small
eccentricity.

To obtain the numerical solutions, the follow­
ing expansion form was utilized

which have already been defined in the previ­
ous work. For the present problem, the Four­
ier function F k may be expressed as cosine func­

tions due to the flow symmetry with respect to the
plane of eccentricity. Considering the expansion

form with dimensionless parameters, the dimen­
sionless mean flow velocity, w=(wwee,wt),

can be obtained from Eq. (5) as

where s(kB) denotes sin kB. By the potential

theory based on the spectral method, the coeffi­
cients q)jk have already been obtained. Hence,

the coefficients Wk can be determined.
To solve the pressure drop along the circumfer­

ential direction, the shear stress on the surface of
the cylinders is considered by carefully investigat­
ing the distribution of the unsteady circumfer­
ential flow velocity across the annular space for
both cases: (a) when the ratio of the penetration

depth with respect to annular gap is relatively
large and (b) the ratio is relatively small. This
ratio is related to the oscillatory Reynolds

number by the definition, 8p/ H = ,/2/Res' a/H,
where 8p is the penetration depth.

(a) case of relatively low oscillatory Reynolds
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through which the unsteady pressure drop
shown in Eq. (I), may be determined. In the
above equation, the mean flow velocity w* has
already been obtained by potential theory as
shown in Eq. (5). To consider the boundary
condition, on the surface of the moving inner
cylinder, the lateral velocity of the moving cylin­
der, ev, is added to the left side of the first
equation.

Utilizing the dimensionless parameters in the
transformed domain, the above equation can be
rewritten in nondimensional form p*cose =-.!l.-(p*sine) -.!l1!.'-sine. (17)de dEl

Taking account of the pressure and skin fric­
tion, the viscous drag forces may be obtained
by integrating its components around the cylinder

as

(15)

(16)

Fd = - a121C(p*cose

aw* I )+J1-- sine de.ar T=a

However, some manipulation is required to bring
p*, which is an implicit function of e, into a
convenient form. In this respect, p*cos e is
modified as

( 12)

aw* I w*+evsine
ar T=a Op

aw*/ __~~ar T~b - Op'

1L= -tj.. 2 I +h/~
ae Res h

Proceeding similarly with Eq. (13), for the
case (b) of high oscillatory Reynolds number,
the nondimensional pressure is expressed as

(19)

F- - -12J,±h/2 ( TXT + 1/2)
vP- Res ~ VVI ,

- -6 1 .
Fvs=-R--Ji-(~+2/3), (20)

es 1

in which the subscripts up and us stand for the
unsteady pressure and the skin friction terms,
respectively. Thus, the damping coefficient due to
the viscous drag can be expressed as

CVd=-p7ra2wI'd· (21)

Similarly, for case (b),

F- - - / 2 I + h/~( fiT + 1/2)
vP- VRes h YYl ,

where

The integral of the first term of the right-hand
side in the above equation is equal to zero.
Hence, the equation of the drag force can be
expressed in the nondimensional form

Fd= pa2a/aee'WI121C
( ~~

2 aiiJ I ). e+ t hRes az Z=J Sill de
=tp7ra2u}aee'WII'd, (18)

where aee 'Wi denotes the lateral displacement of
oscillatory motion of the cylinder as mentioned
before and I'd is the nondimensional viscous
damping force.

Substituting Eqs. (II) and (14) into the above
equation for case (a) leads to

(13)

(14)

lL- _t~~ I +h/2.
ae - Res h2

±(Wk +o/2)s(ke).
k~O

where the coefficients for the nondimensional
mean flow velocity, Wk , are defined in Eq. (7).
Thus, the unsteady pressure drop and the skin
friction on the surfaces of the cylinders can be
estimated, considering Eqs. (I) and (2).

2.2 Unsteady drag force
Having determined skin friction on the sur­

faces, the unsteady pressure distribution along the
circumference may now be found both for the
relatively low and high oscillatory Reynolds
number. Then the unsteady drag force can be

obtained by considering the skin friction on the
surface of the moving cylinder and the
pressure drop along the circumference of the
inner cylinder.

For the case (a) of low oscillatory Reynolds
number, substituting Eq. (II) into Eq. (3) leads to
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(22)

Considering these results, the viscous drag
force is expressed in terms of an explicit func­

tion of the oscillatory Reynolds number, since

the coefficients (])jk and Wk, determined by the
potential theory, are dependent only on the geom­
etry of system.

3. Unsteady Damping Forces Due to
Flexible Oscillation of a Cylinder

By inspection of the results given by the full
viscous theory based on the collocation finite­

difference method, the added mass coefficient can
be approximately calculated by potential flow

theory for narrow annular configurations, since it
is mainly affected by the geometry of the system.

However, the damping forces are dependent on
fluid properties as well as geometry. In general,

it is well known that the damping force acting on
a flexible cylinder subject to axial flow are

decomposed into two terms: the viscous damping
force due to the fluid viscosity, as shown in the

previous section, and a force due to the Coriolis

effect associated with the axial flow.
According to the results given in the full

viscous theory (Sim and Cho, 1993b), the cir­

cumferential velocity is almost linearly depen­

dent on the velocity of the flexible cylinder and
the profile of this velocity along the radial direc­

tion is similar to that obtained in the two­
dimensional problem shown in Fig. 1. Therefore,

the viscous damping forces can be approximat­
ed by considering the unsteady pressure drop

mainly due to the radial derivative of the un­
steady circumferential flow velocity in annular
flow. Hence, the viscous drag force due to flexural
motion of the inner cylinder can be calculated by

considering the viscous damping force F d

obtained by the approximate method for the two­
dimensional problem based on the lateral dis­

placement, e/(L/2, [), as

F F e/(x, [) (23)
d3= d e/(L/2, [)'

where subscript 3 stands for the three-dimensional

problem and the lateral displacement e/(x, [) of
the inner cylinder is expressed in terms of eigen­

function, ~Mx), which is the first mode expansion
for clamped·damped beam,

e/(x, [)=E(x)e,wt=adIJ(x)e,wt. (24)

Generally, the motion is expressed in terms of
normal-mode expansion as

where ¥Ik and ¥2k denote the trigonometric and
hyperbolic: components of these eigenfunctions,
respectively,

¥Ik = -COS/3kX + O'ksin/3kx,
¥2k =cosh/3kx - O'ksinh/3kx, (26)

and O'k=(cosh /3kL-cos /3kL)/(sinh /3kL-sin
/3kL), the /3kL being the corresponding
eigenvalues of a clamped-clamped beam.

Thus, the viscous damping forces can be rewrit­
ten in the following form

Fd3 = lpJra2w2ae (L/2)e,wtFd3, (27)

where e = e/ /(ae,wt) and

- - e/(x, [)
Fd3 = Fd e/(L/2, t)'

in which F d= F vp +F vs has already been
obtained in the previous section as function of
the oscillatory Reynolds numbers.

Taking account of the potential flow theory
based on the slender body assumption (Lighth­
ill, 1960), the damping force due to the axial

flow, which is related to the Coriolis force,

may be estimated by the following equation

F - -2 2U- (ie/(x, [) (28)
s- pJra oxot X'

where the mean axial flow velocity [J is obtained
by integrating the axial flow velocity over the
annular space and the ratio of confinement is
equal to the added mass coefficient determined

by the slender body potential flow theory, as

x= (b2+a2)/(b2- a2).
Utilizing the normal mode expansion for the

flexural motion, the equivalent Coriolis force can

be expressed as

(29)

where
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F. --2{)/31 1jt{(X)
C- OJ X 1/JI{L/2) ,

in which the prime denotes differentiation with
respect to x, and /31L represents the eigenvalue
for the first mode of the flexible cylinder.

Considering the viscous drag force and the
equivalent Coriolis force, the total damping
force acting on the flexible cylinder subject to
steady axial flow in a narrow annulus can be
calculated approximately by

Fdt = lp7Ca2OJ2a ee,wt(Fd3 +Fe)

=cP7Ca2OJ2aee,wtFdt. (30)

4. Results and Discussion

The main purpose of the present work is to
develop semi-analytical methods for estimating
the damping force as influenced by the oscillatory
Reynolds number, the geometry of system and
the Reynolds number. To validate the present
methods, the present results are compared to the
results given by the viscous theories (Sim and
Cho, 1993a and 1993b) based on the spectral
method.

When the inner cylinder executes translational
motion in the plane of symmetry, the calcula­
tions have been conducted for the cases of
various ratios of the radii, bI a, with a selected
oscillatory Reynolds number, rather than attempt­
ing an exhaustive parametric study. In order to

investigate the effect of axial flow on the damping
force acting on the inner cylinder in a narrow
annulus, the damping force has been calculated
with the chosen Reynolds number based on
hydraulic diameter 2ha.

In this study, we are mostly concerned with
forces on the centrebody per unit length and
their variation with length. With regard to the
Coriolis force, it should be remarked that the
integrated force (for xE(O, L» is zero- alth­
ough its variation with x is of interest and will
be shown in the results that follows.

The viscous drag force with increasing oscil­
latory Reynolds number will be discussed for bl
a= 1.25 and bla= 1.4. The viscous drag coeffi­
cient Fd obtained for both cases of low and

Table 1 Comparison of the drag coefficients Fd

obtained by the approximate method
developed for (a) low and (b) high oscil·
latory Reynolds numbe. and by the numeri·
cal method with various ratios of the r>ene­
tration depth to the annular space

Approximate Numerical
bla Res IMH Result Fd

Results Fd(a) (b)--

5000 0.08 0.22 0.52 0.53

1000 0.18 1.08 1.16 1.46

1.25 500 0.25 2.17 1.65 2.44
f---

100 0.57 10.8 3.68 11.0

50 0.80 21.7 5.21 22.1

5000 0.05 0.06 0.26 0.25

1.4 500 0.16 0.64 0.82 0.96

100 0.36 3.18 1.84 3.34

50 0.50 6.35 2.60 6.61

high oscillatory Reynolds number is shown in
Table I, where the results are compared to the
corresponding numerical results based on the
spectral collocation method. The drag coeffi­
cient Fd is the same definition to the imagi­
nary one :;s(F) defined in the previous numerical
method.

From the results, it is found that the transition
region, where both approximate methods give
approximately same value, is situated around 8p l
H =0.2 : Above this ratio of penetration depth,
the method developed for low oscillatory
Reynolds numbers can be used, while the other
one is more suitable for high Res. Thus, it is
true that the viscous drag force is dependent on
the ratio of the penetration depth to the annular
space, which affects the circumferential flow
velocity profile in the radial direction.

In Fig. 3, the nondimensional damping forces
for various oscillatory Reynolds numbers (Res
= 50, 500, 5,000 and 50,(00) are illustrated for
concentric annular configurations to show the
effect of bla. The results denoted by close
symbols represent the nondimensional force Fup
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b/a

Fig. 3 Nondimensional VISCOUS damping force
obtained by the approximate method for the
translational motion of the inner cylinder in
concentric configurations; considering only
unsteady pressure(closed symbols), and
unsteady shear stress and pressure( open
symbols).--, numerical results obtained
with the spectral method (Sim and Cho,
1993a)

e/{b - a)

Fig. 4 Effect of annular eccentricity on the viscous
damping force obtained by the approximate
method for the translational motion of the
inner cylinder and for hi a= 1.25: ., Res
=50; A, Res =5,OOO. Compared with the
numerical results obtained with the spec­
tral collocation method (Sim and Cho,
1993a)

10.00

-t

1.00

0.10

0.01
1.00 1.50 2.00

Re. = 50

Re. = 500

Re. = 5,000

Re. = 50,000

10.0

1.0

0.1
0.00

..

0.25 0.50

obtained by considering only the unsteady pres­

sure. The overalI results Fd' including the effect of
skin friction, are denoted by the open symbols.
According the results, the effect of skin friction is
relatively small; however, the relative magni­

tude of the effect of the skin friction versus the
unsteady pressure becomes larger with increasing

the radius ratio hia. By inspection of Egs. (20)
and (22), this can be expected: the ratio

between the two results is of the order of h­
As compared to the numerical results obtained

by viscous flow theory with the spectral method
(Sim and Cho, 1993a), good agreement is found

between these results and the numerical results.
When the inner cylinder has translational

motion in the plane of axis symmetry in an eccen­
tric annulus, the nondimensional overall drag

force Fd is presented in Fig. 4 for hia= 1.25, with
oscillatory Reynolds numbers (a) Res=50 and
(b) Res= 5,000. For the former case, the
calculation is done by the method developed

for low oscillatory Reynolds numbers and for
the latter case by the method developed for

high oscillatory Reynolds numbers. Its results

are compared to the numerical solutions. The
present approximate method (developed in Sec­

tion 2) is found to be adequate.
In Fig. 5, the overall damping force including

the effect of the axial flow (Re=626 and 1,256)
given by the present approximate method (devel­
oped in Section 3) are compared to the numer­

ical results (Sim and Cho, 1993b) in case of hi
a= 1.25. In the present analysis, Reynolds num­

ber is defined by Res= [j2hal)). As shown in the
figure, the nondimensional damping force may be

decomposed into two components for the given

flexural motion (the first mode vibration as a
clamped-clamped beam); (i) the symmetric com­
ponent with respect to the middle point X =xlL
= 1/2, which is related to the unsteady viscous
drag force, and (ii) the antisymmetric one,
which associated with the Coriolis force (axial
flow effect). It is shown in Fig. 5(a) that the
antisymmetric component becomes large with
increasing the Reynolds number. The damping
force, containing the effect of the unsteady viscous

drag and the axial flow, predicted by the approxi­

mate method agrees well with the numerical



Damping Forces of Vibrating Cylinder in Confined Viscous Fluid... 51

(a)

-1 L-_-'---_~_-'-_ _'__ _'__ __:':-~

-0.2 0.0 0.2 0.4 0.. 0.. t.O 1.2

X

(a) Res = 5,000

(b)
M

•.0

0.0 'I'-.::.o--'--------''r----,---;o;--1

-2.5

-'.0 L_-'-_--'-_-'-_-'-_ __:':--:-'::----:-
-0.2 0.0 0.2 0.4 D.' 0.8 1.0 1.2

x
(b) Res = 500

Fig. 5 Nondimensional viscous damping force
obtained by the approximate method,--;
and by the collocation finite-difference meth­
od (Slm and Cho, 1993b), 0, Re=626; 6,

Re = 1,256, for the first-mode flexural
oscillations of the inner cylinder:

ones, which means the full viscous theory

shown in the previous work is validated in­
directly, however its comparison have been con­

ducted in special case - slender cylinder sub­
ject to narrow annular flow. The effects of the

oscillatory motion on the fluid-dynamic forces
at upstream and downstream are not shown in

the present results; however, the effects were
predicted by the previous numerical theory.

Taking account of the above results, the
interesting remarks are as follows; (i) the
present approximate method can be utilized for
estimating the damping force, especially for nar­

row configuration where the damping force has
important role on the dynamics of system and
the virtual mass can be estimated by potential
theory; (ii) the damping force can be expressed

in term of the circular frequency of the moving
cylinder explicitly through the approximate

method - this expression is very convenient to
analyse the stability of system; (iii) the unsteady

viscous drag force is proportional to 1/Res for
relatively low oscillatory numbers and to 1/

.rRes for relatively high ones.
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